数据中心四大发展方向
统一结构
当今,部署在数据中心服务器机架上的典型服务器都配有 2 个或者 3 个高功耗适配器,用以连接网络(以太网)、存储(光纤通道)和集群(InfiniBand 或者专有互联)3 个完全不同的结构中。这 3 种结构的互连要求差异很大:网络互连能够容忍数据包丢失和高时延;存储互连需保证无数据包丢失,而集群互连则需要以最低的时迟协助进程间通信。这些截然不同的结构导致了“网络蔓延”现象的出现,即数以万计的线缆通过成百上千的网络交换机、路由器和应用设备,将成千上万的服务器和存储设备连接在一起。所有这些必然会导致功耗与冷却成本的增加,以及管理这些结构所需的 CAPEX 和 OPEX 成本的增长。
10G 以太网的出现,加之行业为满足存储和集群互联需求而对以太网协议进行的关键扩展,将使现有结构融合为基于以太网的统一整合型网络结构。这种结构将提供对其所支持的存储和处理资源的无缝访问。从纯物理资源的角度来看,由于该结构将适配器、线缆和交换机等资源进行了整合,因而可以降低新一代数据中心的营运成本和用电成本。
扁平网络
当今的数据中心网络采用的是针对企业网和服务提供商网络开发的传统 L2 和 L3 网络设备(交换机和路由器)。这种传统设备无法为满足新一代数据中心的严格要求而进行全面扩展。控制协议的可扩展性问题导致资源利用效率低下(链路、交换机、网络)、L2 VLAN 和 L3 子网等限制性拓扑结构,以及严重超额的层级架构,这一切都会严重限制虚拟机的移动性,以及随之而来的移动工作负载和动态提供应用的能力。这些问题会在网络性能和功耗方面导致不尽人意的结果,并会对计算和存储虚拟化所需的关键优化工作造成干扰。
在过去几年里,我们看到专用于 L2 和 L3 以太网交换的商用芯片的出现。这些交换芯片可满足新一代数据中心的独特要求,并提供多路负载均衡、主动拥塞管理和可扩展结构拓扑等增强性能,从而能够在链路、交换机和网络层面上显著改善资源的利用效率。
控制层协议的复杂性和专有实施将被可扩展的全新开放式控制协议管理栈所取代,该管理栈甚至可与数据层完全分离。控制层的可扩展性能够扩展出数以万计的节点,从而实现贯穿整个数据中心的、无缝与实时的虚拟机迁移。
所有这些数据层和控制层的增强功能都将促成跨整个数据中心的大型、扁平 L2网络结构的诞生。数据中心网络基板的“扁平化”可实现将数据中心网络彻底商品化进而从根本上改变数据中心的经济性。
边缘的分布式智能
与常规 L2 / L3 交换设备相似,数据中心的各种“智能化”设备(负载均衡器、安全设备、应用加速器等)也采用可纵向扩展架构,现已成为严重的可扩展性瓶颈。这些设备会在网络中造成阻塞点,并进一步限制在整个数据中心内实现虚拟机的无缝实时移植这一最终目标的实现。
诸如负载均衡器、应用加速器和安全设备(认证、加密、访问控制、入侵防御等)等解决方案也需要适应虚拟数据中心架构。它们必须能够支持移动用户、移动虚拟机和动态网络配置。数据中心将不再使用专有的封闭式可纵向扩展硬件实施方案,而是通过在大型扁平网络的边缘标准服务器上运行软件来部署这些解决方案,这样就能以极低的成本实现智能化的横向扩展。
能源匹配网络
传统的网络设备没能充分考虑到能源感知或能源匹配问题。即便是行业领先的交换机和路由器在低利用率下运行时也会消耗接近峰值的功率。在网络层面,数据中心运营商无法通过其网络的子网来路由流量,也就无法在数据中心服务利用率较低的时候对能耗进行优化。
新一代数据中心要求在器件、电路、组件、板件、系统、软件以及网络管理等各个层面都实现能源感知和匹配设计。这些技术可显著减少功耗以及相应的冷却成本,使数据中心运营商可对整个数据中心的能耗优化进行控制并将其与数据中心服务的使用情况相匹配。