存储 频道

探析网络文件系统的演化与发展

  对于高延迟网络,NFSv4 实现称为 compound procedure 的程序。这一程序从本质上允许在单个请求中嵌入多个 RPC 调用,来最小化通过网络请求的 transfer tax。它还为响应实现回调模式。

  NFS 协议

  从客户端的角度来说,NFS 中的第一个操作称为 mount。 Mount 代表将远程文件系统加载到本地文件系统空间中。该流程以对 mount(Linux 系统调用)的调用开始,它通过 VFS 路由到 NFS 组件。确认了加载端口号之后(通过 get_port 请求对远程服务器 RPC 调用),客户端执行 RPC mount 请求。这一请求发生在客户端和负责 mount 协议(rpc.mountd)的特定守护进程之间。这一守护进程基于服务器当前导出文件系统来检查客户端请求;如果所请求的文件系统存在,并且客户端已经访问了,一个 RPC mount 响应为文件系统建立了文件句柄。客户端这边存储具有本地加载点的远程加载信息,并建立执行 I/O 请求的能力。这一协议表示一个潜在的安全问题;因此,NFSv4 用内部 RPC 调用替换这一辅助 mount 协议,来管理加载点。

  要读取一个文件,文件必须首先被打开。在 RPC 内没有 OPEN 程序;反之,客户端仅检查目录和文件是否存在于所加载的文件系统中。客户端以对目录的 GETATTR RPC 请求开始,其结果是一个具有目录属性或者目录不存在指示的响应。接下来,客户端发出 LOOKUP RPC 请求来查看所请求的文件是否存在。如果是,会为所请求的文件发出 GETATTR RPC 请求,为文件返回属性。基于以上成功的 GETATTRs 和 LOOKUPs,客户端创建文件句柄,为用户的未来需求而提供的。

  利用在远程文件系统中指定的文件,客户端能够触发 READ RPC 请求。READ 包含文件句柄、状态、偏移、和读取计数。客户端采用状态来确定操作是否可执行(那就是,文件是否被锁定)。偏移指出是否开始读取,而计数指出所读取字节的数量。服务器可能返回或不返回所请求字节的数量,但是会指出在 READ RPC 回复中所返回(随着数据)字节的数量。

  NFS 中的创新

  NFS 的两个最新版本(4 和 4.1)对于 NFS 来说是最有趣和最重要的。让我们来看一下 NFS 创新最重要的一些方面。

  在 NFSv4 之前,存在一定数量的辅助协议用于加载、锁定、和文件管理中的其他元素。NFSv4 将这一流程简化为一个协议,并将对 UDP 协议的支持作为传输协议移除。NFSv4 还集成支持 UNIX 和基于 Windows® 的文件访问语义,将本地集成 NFS 扩展到其他操作系统中。

  NFSv4.1 介绍针对更高扩展性和更高性能的并行 NFS(pNFS)的概念。 要支持更高的可扩展性,NFSv4.1 具有脚本,与集群化文件系统风格类似的拆分数据/元数据架构。如 图 4 所展示的,pNFS 将生态系统拆分为三个部分:客户端、服务器和存储。您可看到存在两个路径:一个用于数据,另一个用于控制。pNFS 将数据布局与数据本身拆分,允许双路径架构。当客户想要访问文件时,服务器以布局响应。布局描述了文件到存储设备的映射。当客户端具有布局时,它能够直接访问存储,而不必通过服务器(这实现了更大的灵活性和更优的性能)。当客户端完成文件操作时,它会提交数据(变更)和布局。如果需要,服务器能够请求从客户端返回布局。

  pNFS 实施多个新协议操作来支持这一行为。LayoutGet 和 LayoutReturn 分别从服务器获取发布和布局,而 LayoutCommit 将来自客户端的数据提交到存储库,以便于其他用户使用。服务器采用 LayoutRecall 从客户端回调布局。布局跨多个存储设备展开,来支持并行访问和更高的性能。


  图 4. NFSv4.1 的 pNFS 架构

  数据和元数据都存储在存储区域中。客户端可能执行直接 I/O ,给出布局的回执,而 NFSv4.1 服务器处理元数据管理和存储。虽然这一行为不一定是新的,pNFS 增加功能来支持对存储的多访问方法。当前,pNFS 支持采用基于块的协议(光纤通道),基于对象的协议,和 NFS 本身(甚至以非 pNFS 形式)。

  通过 2010 年 9 月发布的对 NFSv2 的请求,继续开展 NFS 工作。其中以新的提升定位了虚拟环境中存储的变化。例如,数据复制与在虚拟机环境中非常类似(很多操作系统读取/写入和缓存相同的数据)。由于这一原因,存储系统从整体上理解复制发生在哪里是很可取的。这将在客户端保留缓存空间,并在存储端保存容量。NFSv4.2 建议用共享块来处理这一问题。因为存储系统已经开始在后端集成处理功能,所以服务器端复制被引入,当服务器可以高效地在存储后端自己解决数据复制时,就能减轻内部存储网络的负荷。其他创新出现了,包括针对 flash 存储的子文件缓存,以及针对 I/O 的客户端提示 (潜在地采用 mapadvise 作为路径)。

  NFS 的替代物

  虽然 NFS 是在 UNIX 和 Linux 系统中最流行的网络文件系统,但它当然不是唯一的选择。在 Windows® 系统中,ServerMessage Block [SMB](也称为 CIFS)是最广泛使用的选项(如同 Linux 支持 SMB一样,Windows 也支持 NFS)。

  最新的分布式文件系统之一,在 Linux 中也支持,是 Ceph。Ceph 设计为容错的分布式文件系统,它具有 UNIX 兼容的 Portable Operating System Interface(POSIX)。您可在 参考资料 中深入了解 Ceph。

  其他例子包括 OpenAFS,是 Andrew 分布式文件系统的开源版(来自 Carnegie Mellon 和 IBM),GlusterFS,关注于可扩展存储的通用分布式文件系统,以及 Lustre,关注于集群计算的大规模并行分布式文件系统。所有都是用于分布式存储的开源软件解决方案。

  更进一步

  NFS 持续演变,并与 Linux 的演变类似(支持低端、嵌入式、和高端性能),NFS 为客户和企业实施可扩展存储解决方案。关注 NFS 的未来可能会很有趣,但是根据历史和近期的情况看,它将会改变人们查看和使用文件存储的方法。

0
相关文章