【IT168 技术】RAID磁盘阵列的采用为存储系统(或者服务器的内置存储)带来巨大利益,提高了传输速率并且提供容错功能。本文分析了磁盘阵列的瓶颈,主要体现在2个方面:吞吐量与IOPS。
1、吞吐量
吞吐量主要取决于磁盘阵列的构架,光纤通道的大小(现在阵列一般都是光纤阵列,至于SCSI这样的SSA阵列,我们不讨论)以及硬盘的个数。阵列的构架与每个阵列不同而不同,他们也都存在内部带宽(类似于pc的系统总线),不过一般情况下,内部带宽都设计的很充足,不是瓶颈的所在。
光纤通道的影响还是比较大的,如数据仓库环境中,对数据的流量要求很大,而一块2Gb的光纤卡,所77能支撑的最大流量应当是2Gb/8(小B)=250MB/s(大B)的实际流量,当4块光纤卡才能达到1GB/s的实际流量,所以数据仓库环境可以考虑换4Gb的光纤卡。
最后说一下硬盘的限制,这里是最重要的,当前面的瓶颈不再存在的时候,就要看硬盘的个数了,我下面列一下不同的硬盘所能支撑的流量大小:
10 K rpm 15 K rpm ATA
——— ——— ———
10M/s 13M/s 8M/s
那么,假定一个阵列有120块15K rpm的光纤硬盘,那么硬盘上最大的可以支撑的流量为120*13=1560MB/s,如果是2Gb的光纤卡,可能需要6块才能够,而4Gb的光纤卡,3-4块就够了。
2、IOPS
决定IOPS的主要取决与阵列的算法,cache命中率,以及磁盘个数。阵列的算法因为不同的阵列不同而不同,如我们最近遇到在hds usp上面,可能因为ldev(lun)存在队列或者资源限制,而单个ldev的iops就上不去,所以,在使用这个存储之前,有必要了解这个存储的一些算法规则与限制。
cache的命中率取决于数据的分布,cache size的大小,数据访问的规则,以及cache的算法,如果完整的讨论下来,这里将变得很复杂,可以有一天好讨论了。我这里只强调一个cache的命中率,如果一个阵列,读cache的命中率越高越好,一般表示它可以支持更多的IOPS,为什么这么说呢?这个就与我们下面要讨论的硬盘IOPS有关系了。
硬盘的限制,每个物理硬盘能处理的IOPS是有限制的,如
10 K rpm 15 K rpm ATA
——— ——— ———
100 150 50
同样,如果一个阵列有120块15K rpm的光纤硬盘,那么,它能撑的最大IOPS为120*150=18000,这个为硬件限制的理论值,如果超过这个值,硬盘的响应可能会变的非常缓慢而不能正常提供业务。
在raid5与raid10上,读iops没有差别,但是,相同的业务写iops,最终落在磁盘上的iops是有差别的,而我们评估的却正是磁盘的IOPS,如果达到了磁盘的限制,性能肯定是上不去了。
那我们假定一个case,业务的iops是10000,读cache命中率是30%,读iops为60%,写iops为40%,磁盘个数为120,那么分别计算在raid5与raid10的情况下,每个磁盘的iops为多少。
raid5:
单块盘的iops = (10000*(1-0.3)*0.6 + 4 * (10000*0.4))/120
= (4200 + 16000)/120
= 168
这里的10000*(1-0.3)*0.6表示是读的iops,比例是0.6,除掉cache命中,实际只有4200个iops
而4 * (10000*0.4) 表示写的iops,因为每一个写,在raid5中,实际发生了4个io,所以写的iops为16000个
为了考虑raid5在写操作的时候,那2个读操作也可能发生命中,所以更精确的计算为:
单块盘的iops = (10000*(1-0.3)*0.6 + 2 * (10000*0.4)*(1-0.3) + 2 * (10000*0.4))/120
= (4200 + 5600 + 8000)/120
= 148
计算出来单个盘的iops为148个,基本达到磁盘极限
raid10
单块盘的iops = (10000*(1-0.3)*0.6 + 2 * (10000*0.4))/120
= (4200 + 8000)/120
= 102
可以看到,因为raid10对于一个写操作,只发生2次io,所以,同样的压力,同样的磁盘,每个盘的iops只有102个,还远远低于磁盘的极限iops。
在一个实际的case中,一个恢复压力很大的standby(这里主要是写,而且是小io的写),采用了raid5的方案,发现性能很差,通过分析,每个磁盘的iops在高峰时期,快达到200了,导致响应速度巨慢无比。后来改造成raid10,就避免了这个性能问题,每个磁盘的iops降到100左右。